Be Author Be Seller Become Member now and avail new Offers!
.com Category
Login
kachhua
Redirecting you.... kachhua

Log in

Mobile No / Email


Password



or
Sign Up
kachhua
Redirecting you.... kachhua

Registration

Already have an account? Login Here

Mobile No.
Name
Email
Password

or Signup with
Cart (0 Items)
Subtotal: $0.00
Your cart is empty!
 


Learn By Example: Hadoop, MapReduce for Big Data problems

A hands-on workout in Hadoop, MapReduce and the art of thinking "parallel"
Learn By Example: Hadoop, MapReduce for Big Data problems
  • ₹ 2999
logo
: Online Course
: English
: Loonycorn
Displaying 1-4 of 4 result(s).

About Course

  • This course is a zoom-in, zoom-out, hands-on workout involving Hadoop, MapReduce and the art of thinking parallel. 

    Zoom-in, Zoom-Out:  This course is both broad and deep. It covers the individual components of Hadoop in great detail, and also gives you a higher level picture of how they interact with each other. 

    Hands-on workout involving Hadoop, MapReduce : This course will get you hands-on with Hadoop very early on.  You'll learn how to set up your own cluster using both VMs and the Cloud. All the major features of MapReduce are covered - including advanced topics like Total Sort and Secondary Sort. 

    The art of thinking parallel: MapReduce completely changed the way people thought about processing Big Data. Breaking down any problem into parallelizable units is an art. The examples in this course will train you to "think parallel". 

Topics covered in this course

What included in this Course?

  • Lot's of cool stuff ..

    • Using MapReduce to 

       

      • Recommend friends in a Social Networking site: Generate Top 10 friend recommendations using a Collaborative filtering algorithm. 
      • Build an Inverted Index for Search Engines: Use MapReduce to parallelize the humongous task of building an inverted index for a search engine. 
      • Generate Bigrams from text: Generate bigrams and compute their frequency distribution in a corpus of text. 

     

    • Build your Hadoop cluster: 

       

      • Install Hadoop in Standalone, Pseudo-Distributed and Fully Distributed modes 
      • Set up a hadoop cluster using Linux VMs.
      • Set up a cloud Hadoop cluster on AWS with Cloudera Manager.
      • Understand HDFS, MapReduce and YARN and their interaction 

     

    • Customize your MapReduce Jobs: 

       

      • Chain multiple MR jobs together
      • Write your own Customized Partitioner
      • Total Sort : Globally sort a large amount of data by sampling input files
      • Secondary sorting 
      • Unit tests with MR Unit
      • Integrate with Python using the Hadoop Streaming API

     

     All the basics: 

    • MapReduce : Mapper, Reducer, Sort/Merge, Partitioning, Shuffle and Sort
    • HDFS & YARN: Namenode, Datanode, Resource manager, Node manager, the anatomy of a MapReduce application, YARN Scheduling, Configuring HDFS and YARN to performance tune your cluster. 
    • Develop advanced MapReduce applications to process BigData
    • Master the art of "thinking parallel" - how to break up a task into Map/Reduce transformations
    • Self-sufficiently set up their own mini-Hadoop cluster whether it's a single node, a physical cluster or in the cloud.
    • Use Hadoop + MapReduce to solve a wide variety of problems : from NLP to Inverted Indices to Recommendations
    • Understand HDFS, MapReduce and YARN and how they interact with each other
    • Understand the basics of performance tuning and managing your own cluster

Who should buy this course?

    • Yep! Analysts who want to leverage the power of HDFS where traditional databases don't cut it anymore
    • Yep! Engineers who want to develop complex distributed computing applications to process lot's of data
    • Yep! Data Scientists who want to add MapReduce to their bag of tricks for processing data
    • You'll need an IDE where you can write Java code or open the source code that's shared. IntelliJ and Eclipse are both great options.
    • You'll need some background in Object-Oriented Programming, preferably in Java. All the source code is in Java and we dive right in without going into Objects, Classes etc
    • A bit of exposure to Linux/Unix shells would be helpful, but it won't be a blocker
 
Discussion
 
Provided by
L

Loonycorn is us, Janani Ravi, Vitthal Srinivasan, Swetha Kolalapudi and Navdeep Singh. Between the four of us, we have studied at Stanford, IIM Ahmedabad, the IITs and have spent years (decades, actually) working in tech, in the Bay Area, New York, Singapore and Bangalore.

Show more

Invite friends and earn upto 20% of all orders placed by them.

Earn by sharing url

Share the link:

COPY



  kachhua
Help & Support Request a Callback Call us on | India : +919662523399/66